Evaluate the following:
(i)(√x+1+√x−1)6+(√x+1−√x−1)6
(ii)(x+√x2−1)6+(x−√x2−1)6
(iii)(1+2√x)5+(1−2√x)5
(iv)(√2+1)6+(√2−1)6
(v)(3+√2)5−(3−√2)5
(vi)(2+√3)7+(2−√3)7
(vii)(√3+1)5−(√3−1)5
(viii)(0.99)5+(1.01)5
(ix)(√3+√2)6−(√3−√2)6
(x){a2+√a2−1}4+{a2−√a2−1}4
(i)(√x+1+√x−1)6+(√x+1−√x−1)6
=6C0(√x+1)6+6C1(√x+1)5(√x−1)+6C2(√x+1)4(√x−1)2−6C3(√x+1)3(√x−1)3+6C4(√x+1)2(√x−1)4+6C5(√x+1)(√x−1)5+6C6(√x−1)6+6C0(√x+1)6−6C1(√x+1)5(√x−1)+6C2(√x+1)4×(√x−1)2−6C5(√x+1)3(√x−1)3+6C4(√x+1)2(√x−1)4−6C5(√x+1)(√x−1)5+6C6(√x−1)6
=2[(x+1)3+15(x+1)2(x−1)+15(x+1)(x−1)2+(x−1)3]
=2[x3+1+3x+3x2+15x3−15x2+15x−15+30x2−30x+15x3+15x2+15x+15−30x2−30x+x3−1−3x2+3x]
=64x3−48x=16x(4x2−3)
(ii)(x+√x2−1)+(x−√x2−1)6
=2[6C0x6+6C2x4(√x2−1)2+6C4x2(√x2−1)4+6C6(√x2−1)6]
=2[x6+15x4(x2−1)+15x2(x2−1)2+(x2−1)3]
=2[x6+15x6−15x4+15x6+15x2−30x4+x6−1−3x4+3x2]
=64x6−96x4+36x2−2
(iii)(1+2√x)5+(1−2√x)5
=2[5C02√x+5C2(2√x)2+5C4(2√x)4]=2[1+10×4×x+16×x2×5]
=2+80x+160x2
(iv)(√2+1)6+(√2−1)6
=6C0(√2)6+6C1(√2)5+6C2(√2)4+6C3(√2)3+6C4(√2)2+6C5(√2)+6C6+6C0(√2)6−6C1(√2)5+6C2(√2)4−6C3(√2)3+6C4(√2)2−6C5(√2)+6C6(√2)0
=2[23+15×22+15×2+1]=2[8+60+30+1]=2(99)=198
(v)(3+√2)5−(3−√2)5
=2[5C1(3)4(√2)1+5C3(3)2(√2)3+5C5(√2)5]
=2[5×81×√2+10×9×2√2+4√2]
=2[405√2+180√2+4√2]=2[589√2]=1178√2
(vi)(2+√3)7+(2−√3)7
=2[7C027+7C225(√3)2+7C4(2)4(√3)4+7C62(√3)6]
=2[128+21×32×3+35×8×9+7×2×27]
=2[128+2016+2520+378]=2[5042]=10084
(vii)(√3+1)5−(√3−1)5
=2[5C1(√3)4+5C3(√3)2+5C5]
=2[5×9+10×3+1]=2[45+30+1]=2[76]=152
(viii)(0.99)5+(1.01)5
=(1−.01)5+(1+.01)5=2[5C1+5C3(.01)2+5C5(.01)5]
=2[5+10×1104+11010]=2[5+11000+11010]=2.0020001
(ix)(√3+√2)6−(√3−√2)6
=2[6C1(√3)5(√2)+6C3+(√3)3(√2)3+6C5(√3)(√2)5]
=2[6×√6×9+20×3√3×2√2+6√3×4√2]=2[54√6+120√6+24√6]
=2[198√6]=396√6
(x){a2+√a2−1}4+{a2−√a2−1}4
Leta2=A,√a2−1=B
(A+B)4+(A−B)4
=B4+4C1AB3+4C2A2B2+4C3A3B+A4+B4−4C1AB3+42A2B2−4C3A3B+A4
=2(A4+4C2A2B2+B4)
=2(A2+6A2B2+B4)
=2(a8+6a(6a4)(a2−1)+(a2−1)2]
=2[a8+6a6−6a4+a4+1−2a2]{a2+√a2−1}4+{a2−√a2−1}4
=2a8+12a6−10a4−4a4+2