weknow
b∫af(x)dx=limh→0h[f(a)+f(a+h)+f(a+2h)+.......+f(a+(n−1)h)]
h=b−an
2∫1(2x+5)dx=limh→0h[f(1)+f(1+h)+f(1+2h)+.......+f(1+(n−1)h)].......(i)
h=2−1n=1n
f(1)=2(1)+5=7
f(1+h)=2(1+h)+5=7+2h
f(1+2h)=2(1+2h)+5=7+4h
f(1+(n−1)h)=2(1+(n−1)h)+5=7+2nh−2h
pluggingin(i)
2∫1(2x+5)dx=limh→0h[7+(7+2h)+(7+4h)+.....+(7+2nh−2h)]
=limh→0h[7n+(2h+4h+2nh)]
=limh→0h[7n+2h(1+2+........n)]
=limh→0h[7n+2h(n(n+1)2)]
=limn→∝1n[7n+1n(n(n+1)1)]
=limn→∝1n[7n+(n+1)]
=limn→∝1n[7n+n(1+1n)]
=limn→∝1n[n(7+(1+1n))]
=limn→∝[7+(1+1n)]
=7+1+0=8