wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the following integral 21|xsinπx|dx

Open in App
Solution

21|xsinπx|dx=11|xsinπx|dx+21|x.sinπx|dx

=210xsinπx|dx+21|x.sinπx|dx

=210x.sinπxdx21x.sinπxdx=2I1I2

I1=10xsinπxdx=[xcosπxπ]10+10cosπxπdx

=[xcosπxπ+sinπxπ2]10=1π

and I2=21xsinπxdx=[xcosπxπ+sinπxπ2]21

=2π+0+(1π)=3π

So, 2I1I2=2π+3π=5π

21|xsinπx|dx=5π

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon