wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the following integral
321x2+6x7dx

Open in App
Solution

Formula: ba1x+adx=ln(x+a)
321x2+6x7dx
321x2+6x+997dx

321(x+3)216dx

321(x+3)242

321(x+34)(x+3+4)

321(x1)(x+7)dx

3218[1x11x+7]dx

18|ln(x1)ln(x+7)|32

18[(ln2ln1)(ln10ln9)]

18[ln20ln10+ln9]

18[ln2×810]

18ln1.8

Therefore, 321x2+6x7dx=18ln1.8

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Piecewise Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon