wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the following integrals:

0πx1+sin2x+cos7xdx

Open in App
Solution


Let I = 0πx1+sin2x+cos7xdx .....(1)
Then,

I=0ππ-x1+sin2π-x+cos7π-xdx=0ππ-x1+sin2x-cos7xdx .....2

Adding (1) and (2), we get

2I=0πx1+sin2x+cos7x+π-x1+sin2x-cos7xdx2I=π0π11+sin2xdx

Dividing the numerator and denominator by cos2x, we get

2I=π0πsec2xsec2x+tan2xdx2I=π0πsec2x1+2tan2xdx2I=2π0π2sec2x1+2tan2xdx 02afxdx=20afxdx,if f2a-x=fx0,if f2a-x=-fx
Put tanx = z

Then sec2xdx=dz

When x0, z0

When xπ2, z

2I=2π0dz1+2z22I=2π×tan-12z20I=π2tan-1-tan-10I=π2×π2-0I=π222

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Factorisation and Rationalisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon