wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the following integrals:

-11xcosπxdx [NCERT EXEMPLAR]

Open in App
Solution


Let I = -11xcosπxdx

Consider fx=xcosπx.

f-x=-xcosπ-x=-xcosπx=xcosπx=fx

I=-11xcosπxdx=201xcosπxdx -aafxdx=20afxdx,if f-x=fx0,if f-x=-fx
Now,

xcosπx=xcosπx,if 0x12-xcosπx,if 12<x1

I=2012xcosπxdx+121-xcosπxdx=2xsinπxπ012-1π012sinπxdx-2xsinπxπ121-1π121sinπxdx=212πsinπ2-0-2π×-cosπxπ012-21πsinπ-12πsinπ2+2π×-cosπxπ121=1π+2π2cosπ2-cos0+1π-2π2cosπ-cosπ2=1π-2π2+1π+2π2=2π

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Conditional Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon