wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the following integrals:

1cosx+cosecxdx

Open in App
Solution

Let I=1cosx+cosecxdx =sinx1+cosx sinxdx =2sinx2+2cosx sinxdx =sinx+cosx+sinx-cosx2+2cosx sinxdx =sinx+cosx2+2cosx sinxdx+sinx-cosx2+2cosx sinxdx =sinx+cosx3-sin2x-cos2x+2cosx sinxdx+sinx-cosx1+sin2x+cos2x+2cosx sinxdx =sinx+cosx3-sinx-cosx2dx+sinx-cosx1+sinx+cosx2dx = I1+I2 ...(1) where, I1=sinx+cosx3-sinx-cosx2dx and I2=sinx-cosx1+sinx+cosx2dxNow,I1=sinx+cosx3-sinx-cosx2dx Let sinx-cosx=t On differentiating both sides, we get cosx+sinxdx=dtI1=13-t2dt =123log3+t3-t+c1 =123log3+sinx-cosx3-sinx-cosx+c1 ...(2)Now,I2=sinx-cosx1+sinx+cosx2dx Let sinx+cosx=t On differentiating both sides, we get cosx-sinxdx=dtI2=-11+t2dt =-tan-1t+c2 =-tan-1sinx+cosx+c2 ...(3)On substituting (2) and (3) in (1), we getI=123log3+sinx-cosx3-sinx+cosx-tan-1sinx+cosx+cHence, 1cosx+cosecxdx=123log3+sinx-cosx3-sinx+cosx-tan-1sinx+cosx+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon