wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the following integrals:

-ππ2x1+sinx1+cos2xdx

Open in App
Solution


Let I = -ππ2x1+sinx1+cos2xdx
Then,
I=-ππ2x1+cos2xdx+-ππ2xsinx1+cos2xdx=I1+I2

Consider fx=2x1+cos2x.
Now,
f-x=2-x1+cos2π-x=-2x1+-cosx2=-2x1+cos2x=-fx
I1=-ππ2x1+cos2xdx=0 -aafxdx=20afxdx,if f-x=fx0,if f-x=-fx

Again, consider gx=2xsinx1+cos2x.

g-x=2-xsin-x1+cos2-x=2xsinx1+cos2x=gx sin-x=-sinx and cos-x=cosx
I2=-ππ2xsinx1+cos2xdx=2×20πxsinx1+cos2xdx -aafxdx=20afxdx,if f-x=fx0,if f-x=-fx=40πxsinx1+cos2xdx .....1
Then,
I2=40ππ-xsinπ-x1+cos2π-xdx=40ππ-xsinx1+cos2xdx .....2 0afxdx=0afa-xdx

Adding (1) and (2), we get

2I2=40ππsinx1+cos2xdx2I2=4π0πsinx1+cos2xdx

Put cosx = z

-sinxdx=dz

When x0, z1

When xπ, z-1

2I2=-4π1-1dz1+z22I2=-4π×tan-1z1-12I2=-4πtan-1-1-tan-112I2=-4π-π4-π4=2π2I2=π2

I=I1+I2=0+π2=π2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon