wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the following integrals:

e2x sin3x+1 dx

Open in App
Solution

We have,I=e2x sin3x+1 dxLet the first function be sin3x+1 and the second function be e2x.First we find the integral of the second function, i.e., e2x dx.e2x dx=12e2xNow, using integration by parts, we getI=sin3x+1e2x dx-dsin3x+1dxe2x dxdx =12sin3x+1e2x-32cos3x+1 e2xdx =12sin3x+1e2x-32cos3x+1e2x dx-dcos3x+1dxe2x dxdx =12sin3x+1e2x-3212cos3x+1e2x+32sin3x+1 e2x dx =12sin3x+1e2x-34cos3x+1e2x-94I+cI+94I=12sin3x+1e2x-34cos3x+1e2x+c134I=e2x2sin3x+1-32cos3x+1+cI=213e2xsin3x+1-32cos3x+1+c =e2x132 sin3x+1-3 cos3x+1+cHence, e2x sin3x+1 dx=e2x132 sin3x+1-3 cos3x+1+c

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Method of Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon