wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the following integrals
32(x2+6x7)dx

Open in App
Solution

32x2+6x7dx

Adding and subtracting 9 under the square root, we get
32x2+6x+997dx
32(x+3)216dx

Let u=x+3
Then, du=dx
Upper limit: at x=3, u=x+3=3+3=6
Lower limit: at x=2, u=x+3=2+3=5

65u216du

Let, I=u216du...(i)
Using integration by parts,
I=u216.1du
I=u2161du[dduu216×1du]du
I=uu21612u216.2u×udu

I=uu216u2u216du

I=uu216u216+16u216du

I=uu216u216u216du16u216du

I=uu216u216du16u216du

I=uu216I16u216du

2I=uu21616u216du

I=12uu2168ln(u+u216)

Now substituting the upper and lower limits of integration we get,
65u216du=|12uu2168ln(u+u216)|65

=12(6621655216)8(ln(6+6216)ln(5+5216)

=12(62059)8(ln(6+20)ln(5+9))

=12(12515)8ln6+258

=12(12515)8ln3+54

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon