∫32√x2+6x−7dxAdding and subtracting 9 under the square root, we get
⇒∫32√x2+6x+9−9−7dx
⇒∫32√(x+3)2−16dx
Let u=x+3
Then, du=dx
Upper limit: at x=3, u=x+3=3+3=6
Lower limit: at x=2, u=x+3=2+3=5
⇒∫65√u2−16du
Let, I=∫√u2−16du...(i)
Using integration by parts,
I=∫√u2−16.1du
⇒I=√u2−16∫1du−∫[ddu√u2−16×∫1du]du
⇒I=u√u2−16−∫12√u2−16.2u×udu
⇒I=u√u2−16−∫u2√u2−16du
⇒I=u√u2−16−∫u2−16+16√u2−16du
⇒I=u√u2−16−∫u2−16√u2−16du−∫16√u2−16du
⇒I=u√u2−16−∫√u2−16du−∫16√u2−16du
⇒I=u√u2−16−I−∫16√u2−16du
⇒2I=u√u2−16−∫16√u2−16du
⇒I=12u√u2−16−8ln(u+√u2−16)
Now substituting the upper and lower limits of integration we get,
∫65√u2−16du=|12u√u2−16−8ln(u+√u2−16)|65
=12(6√62−16−5√52−16)−8(ln(6+√62−16)−ln(5+√52−16)
=12(6√20−5√9)−8(ln(6+√20)−ln(5+√9))
=12(12√5−15)−8ln6+2√58
=12(12√5−15)−8ln3+√54