wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the following integrals:-
x+1x2x+1dx

Open in App
Solution

I=(x+1)dxx2x+1

=12(2x+2)dxx2x+1

=12(2x1+3)dxx2x+1

=12(2x1)dxx2x+1+32dxx2x+1

Let I1=12(2x1)dxx2x+1 and I2=32dxx2x+1
I=I1+I2

I1=12(2x1)dxx2x+1

Let t=x2x+1dt=(2x1)dx

I1=12dtt

=12t12dt

=12t12+112+1+c1

=12t1212+c1

=t12+c1

=x2x+1+c1 where t=x2x+1

I2=32dxx2x+1

=32dxx22×x×12+1414+1

=32dx(x12)2+34

=32dx (x12)2+(32)2

Let u=x12du=dx

=32du u2+(32)2

=32ln[u+u2+34]+c2

=32lnx12+(x12)2+34+c2 where u=x12

=32ln[x12+x2x+14+34]+c2

=32ln[x12+x2x+1]+c2
I=I1+I2

I=x2x+1+c1+32ln[x12+x2x+1]+c2

I=x2x+1+32ln[x12+x2x+1]+c1+c2

I=x2x+1+32ln[x12+x2x+1]+C where C=+c1+c2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon