Evaluate the following limit: limx→0 (cosec x - cot x)
Here limx→0(cosecx−cotx)
= limx→0(1sin x−cos xsin x)
= limx→01-cos xsin x=limx→02 sin2x22 sinx2cosx2
= limx→0(cosecx−cotx)
= limx→0 tanx2 = 0.
Evaluate the following limit: limx→0sin axbx
Evaluate the following limit: limx→0(x+1)5−1x
Evaluate the following limit: limx→πsin(π−x)π(π−x)
Evaluate the following limit: limx→0cos xπ−x