Evaluate the following limit: limx→0(x+1)5−1x
Here limx→0(x+1)5−1x [00 form]
= limx→0(x+1)5−1(x+1)−1
Putting x+1 = y, as x → 0, y → 1
∴limy→0y5−1y−1=5.(1)5−1=5×1 = 5.
[∵limx→axn−anx−a=n.an−1]
Evaluate the following limit: limx→−21x+12x+2
Evaluate the following limit: limx→−1x10+x5+1x−1
Evaluate the following limit: limx→3 x+3
Evaluate the following limit: limx→44x+3x−2