Evaluate the following limit: limx→−1x10+x5+1x−1
Here, limx→−1x10+x5+1x−1 = (−1)10+(−1)5+1−1−1=1−1+1−2=−12.
Evaluate the following limit: limx→0(x+1)5−1x
Evaluate the following limit: limx→0ax+bcx+1
Evaluate the following limit: limx→23x2−x−10x2−4
Evaluate the following limit: limx→−21x+12x+2