Evaluate the following limits:
limx→0√1+x+x2−1x
Rationalising the numerator
=limx→0(√1+x+x2−1)x(√1+x+x2+1)(√1+x+x2+1)
=limx→0[(1+x+x2)−1x(√1+x+x2+1)]
=limx→0[x(1+x)x(√1+x+x2+1)]=limx→0[x(1+x)√1+x+x2+1]
=(√1+0+0+1)
=11+1=12
limx→1x2+1x+1
limx→−52x2+9x−5x+5