Evaluate the following one sided limits:
(i)limx→2+x−3x2−4
(ii)limx→2−x−3x2−4
(iii)limx→0+13x
(iv)limx→8+2xx+8
(v)limx→0+2x15
(vi)limx→π−2tan x
(vii)limx→π2+sec x
(viii)limx→0−x2−3x+2x3−2x2
(ix)limx→−2+x2−12x+4
(x)limx→0+(2−cot x)
(xi)limx→0−1+cosecx
(i)limx→2+x−3x2−4
Put x =2+h
⇒h=x−2
as x→2+⇒x>2 slightly
⇒h>0
⇒h→0+.
=limh→0+(2+h)−3(2+h)2−22
=limh→0+2−3+h(2+h−2)(2+h+2)
=limh→0+(h−1)(h)(4+h)
=limh→0+1−1h4+h
=1−104=−∞.
(ii)limx→2−x−3x2−4=limx→0+(2−h)−3(2−h)2−4
Put x=2−h⇒h=2−xasx→2−⇒x<2 slightly
⇒h>0
⇒h→0+
=limx→0+(2−h−3)(2−h+2)(2−h−2)
=limx→0+−1−h(4−h)(−h)
=limx→0+1h+1(4−h)
=10+44=∞.
(iii)limx→0+13x
Put x=0+h⇒h=x
as x→0+⇒0+
=limh→01013(0+h)
=limh→0+10+3h
=10=∞
(iv)limx→8+2xx+8
Put x=−8+h⇒h=x+8
as →−8+⇒x>−8
⇒x+>0
⇒h>0+
⇒h→0+
=limh→0+2(−8+h)(−8+h)+8
=limh→0+−16+2hh
=limh→0+−16h+2
⇒−160+2=−∞
Put x=0+h⇒h=x
as x→0+⇒h→9+
=limh→0+2(0+h)15
=20=∞(vi)limx→π−2tanx
Put x=π2−h⇒h=π2−x
as x→π−2⇒x<→π2slightly
⇒π2−x>0
⇒h>0
⇒h→0+
=limh→0+tan(π2−h)=tan(π2−0)
=tanπ2=∞
(vii)limx→π+2 sec x
Put x=−π2+h⇒h=x+π2
as x→−π+2⇒x>−π2 slightly
⇒x+π2>0
⇒h>0
⇒h→0+
=limh→0+sec(−π2+h)
=sec(−π2+0)
=1cos(−π2)
=−1cos(π2)
=−10=−∞
(viii)limx→0−x2−3x+2x3−2x2
=limx→0−x2−x−2x+2x62(x−2)
=limx→0−x(x−1)−2(x−1)x2(x−2)
=limh→0−(x−1)(x−2)x2(x−2)
=limh→0−(x−1)x2
Put x=0−h⇒h=−x
as x→0−⇒x<0 slightly
⇒−x>0,h>0⇒h→0+
=limh→0+(0−h−1)(0−h)2
=−hh2=−1h=−10=−∞
(ix)limx→2+x2−12x+4
=limx→2+(x−1)(x+1)2(x+2)
Put x=−2+h⇒h=x+2
as x→−2+⇒x>−2 slightly
⇒x+2>0⇒h>0
⇒h→0+
=limh→0+(−2+h−1)(−2+h+1)2(−2+h+2)
=limh→0+(−3+h)(h−1)2h
⇒limh→0+−3x−12×0=10=∞
(x)limx→0−(2−cotx)
=limh→0+2−cot(0−h)
Put x=0−h⇒h=−x
as x→0−⇒x<0 slightly
⇒−x>0⇒h>0
⇒h→0+
=limh→0+2−(−1)cot h=limh→02+cot h
=limh→0+2+1tanh
=2+10=∞
(xi)limx→0−(1+cosecx)
limx→0+1+cosec (0−h)
Put x=0−h⇒h=−x
as x→0−⇒x<0 slightly
⇒−x>0⇒h>0
⇒h→0+
=limh→0+(1−cosec h)
=limh→0+(1−1sin h)
=1−10=−∞