CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the following one sided limits:

(i)limx2+x3x24

(ii)limx2x3x24

(iii)limx0+13x

(iv)limx8+2xx+8

(v)limx0+2x15

(vi)limxπ2tan x

(vii)limxπ2+sec x

(viii)limx0x23x+2x32x2

(ix)limx2+x212x+4

(x)limx0+(2cot x)

(xi)limx01+cosecx

Open in App
Solution

(i)limx2+x3x24

Put x =2+h

h=x2

as x2+x>2 slightly

h>0

h0+.

=limh0+(2+h)3(2+h)222

=limh0+23+h(2+h2)(2+h+2)

=limh0+(h1)(h)(4+h)

=limh0+11h4+h

=1104=.

(ii)limx2x3x24=limx0+(2h)3(2h)24

Put x=2hh=2xasx2x<2 slightly

h>0

h0+

=limx0+(2h3)(2h+2)(2h2)

=limx0+1h(4h)(h)

=limx0+1h+1(4h)

=10+44=.

(iii)limx0+13x

Put x=0+hh=x

as x0+0+

=limh01013(0+h)

=limh0+10+3h

=10=

(iv)limx8+2xx+8

Put x=8+hh=x+8

as 8+x>8

x+>0

h>0+

h0+

=limh0+2(8+h)(8+h)+8

=limh0+16+2hh

=limh0+16h+2

160+2=

Put x=0+hh=x

as x0+h9+

=limh0+2(0+h)15

=20=(vi)limxπ2tanx

Put x=π2hh=π2x

as xπ2x<π2slightly

π2x>0

h>0

h0+

=limh0+tan(π2h)=tan(π20)

=tanπ2=

(vii)limxπ+2 sec x

Put x=π2+hh=x+π2

as xπ+2x>π2 slightly

x+π2>0

h>0

h0+

=limh0+sec(π2+h)

=sec(π2+0)

=1cos(π2)

=1cos(π2)

=10=

(viii)limx0x23x+2x32x2

=limx0x2x2x+2x62(x2)

=limx0x(x1)2(x1)x2(x2)

=limh0(x1)(x2)x2(x2)

=limh0(x1)x2

Put x=0hh=x

as x0x<0 slightly

x>0,h>0h0+

=limh0+(0h1)(0h)2

=hh2=1h=10=

(ix)limx2+x212x+4

=limx2+(x1)(x+1)2(x+2)

Put x=2+hh=x+2

as x2+x>2 slightly

x+2>0h>0

h0+

=limh0+(2+h1)(2+h+1)2(2+h+2)

=limh0+(3+h)(h1)2h

limh0+3x12×0=10=

(x)limx0(2cotx)

=limh0+2cot(0h)

Put x=0hh=x

as x0x<0 slightly

x>0h>0

h0+

=limh0+2(1)cot h=limh02+cot h

=limh0+2+1tanh

=2+10=

(xi)limx0(1+cosecx)

limx0+1+cosec (0h)

Put x=0hh=x

as x0x<0 slightly

x>0h>0

h0+

=limh0+(1cosec h)

=limh0+(11sin h)

=110=


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon