Evaluate the following products without multiplying directly:
(i) 103×107
(ii) 95×96
(iii) 104×96
Since, we have an identity: (x+a)(x+b)=x2+(a+b)x+ab.........(1)
(i) Given 103×107
=(100+3)(100+7)
Substitute x=100,a=3 and b=7 in equation(1), we get
(100+3)(100+7)=1002+(3+7)(100)+(3×7)
=10000+1000+21
=11021
(ii) Given 95×96
=(100−5)(100−4)
=(100+(−5))(100+(−4))
Substitute x=100, a=−5 and b=−4 in equation(1), we get
⇒(100+(−5))(100+(−4))=(100)2+(−5−4)(100)+(−5)(−4)
=10000−900+20
=9120
(iii) Given 104×96
=(100+4)(100−4)
Here, we can use an identity: (a+b)(a−b)=a2−b2 .......(2)
Putting values in a=100 and b=4 in equation (2),(100+4)(100−4)=(100)2−42
=10000−16
=9984