Evaluate the following using suitable identities:
(i)(99)3
(ii) (102)3
(iii) (998)3
(i)(99)3
=(100−1)3
We know that(a−b)3=a3−b3−3ab(a−b) (1)
In this problem, we have a=100 and b=1, putting these values in (1), we get
(100−1)3=(100)3−(1)3−3(100)(1)(100−1)=1000000−1−29700=970299
(ii)(102)3
=(100+2)3
We know that (a+b)3=a3+b3+3ab(a+b) (1)
In this problem, we have a=100 and b=2, putting these values in (1), we get
(100+2)3=(100)3+(2)3+3(100)(2)(100+2)=1000000+8+61200=1061208
(iii)(998)3
=(100−2)3
We know that (a−b)3=a3−b3−3ab(a−b) (1)
In this problem, we have a=1000 and b=2, putting these values in (1), we get
(1000−2)3=(1000)3−(2)3−3(1000)(2)(1000−2)=1000000000−8−5988000=994011992