∫baf(x)dx=(b−a)limn→∞1n[f(a)+f(a+h)+...+f(a+(n−1)h)], where h=b−an
Here, a=0,b=4, and f(x)=x+e2x
∴h=4−0n=4n
⇒∫40(x+e2x)dx=(4−0)limn→∞1n[f(0)+f(h)+f(2h)+...+f((n−1)h)]
=4limn→∞1n[(0+e0)+(h+e2h)+(2h+e2⋅2h)+....+{(m−1)h+e2(n−1)h}]
=4limn→∞1n[1+(h+e2h)+(2h+e4h)+...+{(m−1)h+e2(n−1)h}]
=4limn→∞1n[{h+2h+3h+....+(n−1)h}+(1+e2h+e4h+...+e2(n−1)h)]
=4limn→∞1n[h{1+2+...(n−1)}+(22hn−1e2h−1)]
=4limn→∞1n[h(n−1)n)2+(e2hn−1e2h−1)]
=limn→∞1n[4n⋅(n−1)n2+(e8−1e8n−1)]
=4(2)+4limn→∞(e8−1(e8n−18n)8
=8+4⋅(e8−1)8,(∵limn→∞ex−1x=1)
=8+e8−12=15+e82