wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the given definite integrals as limit of sums:
40(x+e2x)dx

Open in App
Solution

baf(x)dx=(ba)limn1n[f(a)+f(a+h)+...+f(a+(n1)h)], where h=ban
Here, a=0,b=4, and f(x)=x+e2x
h=40n=4n
40(x+e2x)dx=(40)limn1n[f(0)+f(h)+f(2h)+...+f((n1)h)]
=4limn1n[(0+e0)+(h+e2h)+(2h+e22h)+....+{(m1)h+e2(n1)h}]
=4limn1n[1+(h+e2h)+(2h+e4h)+...+{(m1)h+e2(n1)h}]
=4limn1n[{h+2h+3h+....+(n1)h}+(1+e2h+e4h+...+e2(n1)h)]
=4limn1n[h{1+2+...(n1)}+(22hn1e2h1)]
=4limn1n[h(n1)n)2+(e2hn1e2h1)]
=limn1n[4n(n1)n2+(e81e8n1)]
=4(2)+4limn(e81(e8n18n)8
=8+4(e81)8,(limnex1x=1)
=8+e812=15+e82

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon