Let I=∫50(x+1)dx
It is known that,
∫baf(x)dx=(b−a)limn→∞[f(a)+f(a+h)....f(a+(n−1)h], where h=b−an
Here, a=0,b=5, and f(x)=(x+1)
⇒h=5−0n=5n
∴∫50(x+1)dx=(5−0)limn→∞1n[f(0)+f(5n)+...+f((n−1)5n)]
=5limn→∞1n[1+(5n+1)+...{1+(5(n+1)n)}]
=5limn→∞1n[(1+1+1ntimes.....1)+[5n+2⋅5n+3⋅5n+...(n−1)5n]]
=5limn→∞1n[n+5n{1+2+3....(n−1)}]
=5limn→∞1n[n+5n⋅(n−1)n2]
=5limn→∞1n[n+5(n−1)2]
=5limn→∞[1+52(1+1n)]
=5[1+52]
=5[72]=352