wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the given definite integrals as limit of sums:
11exdx

Open in App
Solution

Let I=11exdx
We know that
baf(x)dx=(ba)limn1n[f(a)+f(a+h)....f(a+(n1)h)], where h=ban

Here, a=1,b=1, and f(x)=ex
h=1+1n=2n

I=(1+1)limn1n[f(1)+f(1+2n)+f(1+22n)+....+f(1+(n1)2n)]

=2limn1ne1+e(1+2n)+e(1+22n)+....e(1+(n1)2n)

=2limn1n[e1{1+e2n+e4n+e6n+e(n1)2n}]
which forms a G.P.

=2limne1n⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢e2nn1e2n1⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ (Sum of n terms of G.P.)

=e1×2limn1n[e21e2n1]

=(e21)2e1limn1n(2n)⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢1e2n12n⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

=e1[2(e21)2] [limh0(eh1h)=1]

=e21e

=e1e

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon