Let I=∫1−1exdx We know that
∫baf(x)dx=(b−a)limn→∞1n[f(a)+f(a+h)....f(a+(n−1)h)], where h=b−an
Here, a=−1,b=1, and f(x)=ex
∴h=1+1n=2n
∴I=(1+1)limn→∞1n[f(−1)+f(−1+2n)+f(−1+2⋅2n)+....+f(−1+(n−1)2n)]
=2limn→∞1n⎡⎢⎣e−1+e(−1+2n)+e(−1+2⋅2n)+....e(−1+(n−1)2n)⎤⎥⎦
=2limn→∞1n[e−1{1+e2n+e4n+e6n+e(n−1)2n}]
which forms a G.P.
=2limn→∞e−1n⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣⎛⎝e2n⎞⎠n−1e2n−1⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦ (Sum of n terms of G.P.)
=e−1×2limn→∞1n[e2−1e2n−1]
=(e2−1)2e−1limn→∞1n(2n)⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣1e2n−12n⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
=e−1[2(e2−1)2] [limh→0(eh−1h)=1]
=e2−1e
=e−1e