wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the given definite integrals as limit of sums:
41(x2x)dx

Open in App
Solution

Let I=41(x2x)dx
=41x2dx41xdx
Let I=I1I2, where I1=41x2dx and I2=41xdx .........(1)
It is known that,
baf(x)dx=(ba)limn1n[f(a)+f(a+h)+........f(a+(n1)h], where h=ban
For I1=41x2dx,
a=1,b=4, and f(x)=x2
h=41n=3n
I1=41dx=(41)limn1n[f(1)+f(1+h)+.....+f(1+(n1)h)]
=3limn1nl2+(1+3n)2+(1+23n)2+...(1+(n1)3n)2
=3limn1n12+{12+(3n)2+23n}+....+12+((n1)3n)2+2(n1)3n
=3limn1n[(12+....ntimes+12)+(3n)2{12+22+....+(n1)2}+23n{1+2+....+(n1)}]
=3limn1n[n+9n2{(n1)(n)(2n1)6}+6n{(n1)(n)2}]
=3limn1n[n+9n6(11n)(21n)+6n62]
=3limn[1+96(11n)(21n)+33n]
=3[1+3+3]=3[7]
I1=21 ............(2)
For I2=41xdx,
a=1,b=4, and f(x)=x
h=41n=3n
I2=(41)limn1n[f(1)+f(1+h)+....f(a+(n1)h)]
=3limn1n[1+(1+h)+....+(1+(n1)h]
=3limn1n[1+(1+3n)+....+{1+(n1)3n}]
=3limn1n[(1+1+....ntimes+1)+3n(1+2+....+(n1))]
=3limn1n[n+3n{(n1)n2}]
=3limn1n[1+32(11n)]
=3[1+32]=3[52]
I2=152 ........ (3)
From equations (2) and (3), we obtain
I=I1I2=21152=272

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon