Let I=∫41(x2−x)dx
=∫41x2dx−∫41xdx
Let I=I1−I2, where I1=∫41x2dx and I2=∫41xdx .........(1)
It is known that,
∫baf(x)dx=(b−a)limn→∞1n[f(a)+f(a+h)+........f(a+(n−1)h], where h=b−an
For I1=∫41x2dx,
a=1,b=4, and f(x)=x2
∴h=4−1n=3n
I1=∫41dx=(4−1)limn→∞1n[f(1)+f(1+h)+.....+f(1+(n−1)h)]
=3limn→∞1n⎡⎣l2+(1+3n)2+(1+2⋅3n)2+...(1+(n−1)3n)2⎤⎦
=3limn→∞1n⎡⎣12+{12+(3n)2+2⋅3n}+....+⎧⎨⎩12+((n−1)3n)2+2⋅(n−1)⋅3n⎫⎬⎭⎤⎦
=3limn→∞1n[(12+....ntimes+12)+(3n)2{12+22+....+(n−1)2}+2⋅3n{1+2+....+(n−1)}]
=3limn→∞1n[n+9n2{(n−1)(n)(2n−1)6}+6n{(n−1)(n)2}]
=3limn→∞1n[n+9n6(1−1n)(2−1n)+6n−62]
=3limn→∞[1+96(1−1n)(2−1n)+3−3n]
=3[1+3+3]=3[7]
I1=21 ............(2)
For I2=∫41xdx,
a=1,b=4, and f(x)=x
⇒h=4−1n=3n
∴I2=(4−1)limn→∞1n[f(1)+f(1+h)+....f(a+(n−1)h)]
=3limn→∞1n[1+(1+h)+....+(1+(n−1)h]
=3limn→∞1n[1+(1+3n)+....+{1+(n−1)3n}]
=3limn→∞1n[(1+1+....ntimes+1)+3n(1+2+....+(n−1))]
=3limn→∞1n[n+3n{(n−1)n2}]
=3limn→∞1n[1+32(1−1n)]
=3[1+32]=3[52]
I2=152 ........ (3)
From equations (2) and (3), we obtain
I=I1−I2=21−152=272