We know that,
∫baf(x)dx=(b−a)limn→∞1n[f(a)+f(a+h)+...+f(a+(n−)h)],
where h=b−an
Here, a=a,b=b, and f(x)=x
∴∫baxdx=(b−a)limn→∞1n[a+(a+h)....(a+2h)....a+(n−1)h]
=(b−a)limn→∞1n[(a+a+ntimesa+...+a)+(h+2h+3h+....+(n−1)h)]
=(b−a)limn→∞1n[na+h(1+2+3+....+(n−1))]
=(b−a)limn→∞1n[na+h{(n−1)(n)2}]
=(b−a)limn→∞1n(na+n(n−1)h2]
=(b−a)limn→∞nn[a+(n−1)h2]
=(b−a)limn→∞[a+(n−1)h2]
=(b−a)limn→∞[a+(n−1)(b−a)2n]
=(b−a)limn→∞[a+(1−1n)(b−a)2]
=(b−a)[a+(b−a)2]
=(b−a)[2a+b−a2]
=(b−a)(b+a)2
=12(b2−a2)