wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the given definite integrals as limit of sums:
baxdx

Open in App
Solution

We know that,
baf(x)dx=(ba)limn1n[f(a)+f(a+h)+...+f(a+(n)h)],
where h=ban
Here, a=a,b=b, and f(x)=x
baxdx=(ba)limn1n[a+(a+h)....(a+2h)....a+(n1)h]
=(ba)limn1n[(a+a+ntimesa+...+a)+(h+2h+3h+....+(n1)h)]
=(ba)limn1n[na+h(1+2+3+....+(n1))]
=(ba)limn1n[na+h{(n1)(n)2}]
=(ba)limn1n(na+n(n1)h2]
=(ba)limnnn[a+(n1)h2]
=(ba)limn[a+(n1)h2]
=(ba)limn[a+(n1)(ba)2n]
=(ba)limn[a+(11n)(ba)2]
=(ba)[a+(ba)2]
=(ba)[2a+ba2]
=(ba)(b+a)2
=12(b2a2)

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon