Given : limx→0ax+xcosxbsinx
Substituting x=0 in the given limit,
limx→0ax+xcosxbsinx=limx→0a(0)+(0)cos0bsin0
=0+00
=00
Since it is in 00 form.
We need to simplify it,
Let L=limx→0ax+xcosxbsinx
L=limx→0x(a+cosx)bsinx
L=limx→0(a+cosxb×xsinx)
L=limx→0((a+cosx)b÷sinxx)
L=(limx→0a+cosxb)÷(limx→0sinxx)
L=limx→0(a+cosxb)÷1
L=limx→0(a+cosxb)
Substituting x=0
L=a+cos0b
L=a+1b
∴limx→0ax+xcosxbsinx=a+1b