Given : limx→0cos2x−1cosx−1
Substituting x=0 in the given limit,
limx→0cos2x−1cosx−1=limx→0cos2(0)−1cos(0)−1
=1−11−1
=00
Since it is in 00 form.
We need to simplify it,
Let L=limx→0cos2x−1cosx−1
L=limx→0(1−2sin2x)−1cosx−1
L=limx→01−2sin2x−1cosx−1
L=limx→0−2sin2xcosx−1
L=limx→0−2(1−cos2x)cosx−1
L=limx→02(12−cos2x)1−cosx
L=limx→02(1−cosx)(1+cosx)1−cosx
L=limx→02(1+cosx) {∵cosx≠1 as x≠0}
Substituting x=0
L=2(1+cos0)
⇒L=2(1+1)
⇒L=2×2
⇒L=4
∴limx→0cos2x−1cosx−1=4