Given : limx→0sinaxbx
Substituting x=0 in the given limit,
limx→0sinaxbx=sina(0)b×0
=sin(0)0
=00
Since it is in =00 form,
We need to simplify it
⇒limx→0sinaxbx
=limx→0sinax×1bx
Multiplying and dividing by ax
=limx→0sinax×1bx×axax
=limx→0sinaxax×axbx
=limx→0sinaxax×ab (∵x≠0)
=ab×limx→0sinaxax
{Using limx→0sinnxnx=1}
=ab×1
=ab
∴limx→0sinaxbx=ab