Given limx→0sinax+bxax+sinbx
Substituting x=0 in the given limit,
limx→0sinax+bxax+sinbx=limx→0sina(0)+b(0)a(0)+sinb(0)
=0+00+0
=00
Since it is in 00 form.
We need to simplify it,
Let L=limx→0sinax+bxax+sinbx
L=limx→0x(sinaxx+b)x(a+sin bxx)
L=limx→0(sinaxx)+ba+(sinbxx)
Multiply and divide sinaxx by ax and multiply and divide sinbxx by bx
⇒L=limx→0(sinaxx⋅axax)+ba+(sinbxx⋅bxbx)
⇒L=limx→0((sinaxax⋅axx)+b)a+(sinbxbx⋅bxx)
⇒L=limx→0((sinaxax)⋅a+b)a+(sinbxbx)b
⇒L=(1)a+ba+(1)b
⇒L=a+ba+b
⇒L=1