Given limx→0sinaxsinbx
Substituting x=0 in the given limit,
limx→0sinaxsinbx=sina(0)sinb(0)
=sin(0)sin(0)
=00
Since it is in =00 form.
We need to simplify it,
⇒limx→0sinaxsinbx
Multiplying and dividing by ax and bx
=(limx→0sinax×axax)÷(limx→0sinbx×bxbx)
=limx→0sinaxax×axbx÷limx→0sinbxbx
{Using limx→0sinnxnx=1}
=1×limx→0axbx÷1
=ab
∴limx→0sinaxsinbx=ab