Given : limx→−2(1x+12)x+2 At x=−2, the value of the given function takes the form 00 So, simplifying limx→−2(1x+12)x+2=limx→−22+x2xx+2 (∵x≠−2) =limx→−212x =12(−2) =−14 ∴limx→−2(1x+12)x+2=−14
Evaluate the following limit: limx→−21x+12x+2
Evaluate the following limit: limx→0(x+1)5−1x
Evaluate the following limit: limx→44x+3x−2
Evaluate the following limit: limx→0ax+bcx+1
Evaluate the following limit: limx→−1x10+x5+1x−1