Given limx→3x4−812x2−5x−3
Substituting x=3
=(3)4−812(3)2−5(3)−3
=81−8118−15−3=00
Since it is a 00 form
We simplify as
limx→3x4−812x2−5x−3= limx→3(x2)2−(9)22x2−6x+x−3
Using a2−b2=(a−b)(a+b)
=limx→3(x2−9)(x2+9)2x(x−3)+1(x−3)
=limx→3(x2−(3)2)(x2+9)(2x+1)(x−3)
Using a2−b2=(a−b)(a+b)
=limx→3(x−3)(x+3)(x2+9)(2x+1)(x−3)
=limx→3(x+3)(x2+9)2x+1 (∵x≠3)
=limx→3(x+3)(x2+9)2x+1
Substituting x=3
=(3+3)((3)2+9)2×3+1
=6(9+9)6+1
=6(18)7
=1087
∴ limx→3x4−812x2−5x−3=1087