Given :limx→π2tan(2x)x−π2
Substituting x=π2 in the given limit,
limx→π2tan(2x)x−π2=limx→π2tan2(π2)π2−π2
=tanπ0−0
=00
Since it is in 00 form.
We need to simplify it,
Let L=limx→π2tan2xx−π2
Let y=x−π2⇒y+π2=x
When x→π2
y→π2−π2
y→0
So, our equations become
⇒L=limy→0⎛⎜
⎜⎝tan2(π2+y)y⎞⎟
⎟⎠
⇒L=limy→0(tan(π+2y)y)
⇒L=limy→0(tan2yy)
⇒L=limy→0(1y⋅sin2ycos2y)
⇒L=limy→0(sin2yy⋅1cos2y)
⇒L=limy→0sin2yy×limy→01cos 2y
Multiply and divide by 2
⇒L=limy→0(sin2yy×22)⋅limy→01cos2y
⇒L=2limy→0(sin2y2y)⋅limy→01cos2y
⇒L=2×1×limy→01cos2(0)
⇒L=2×11
⇒L=2