Given : limz→1z13−1z16−1
=(1)13−1(1)16−1
=1−11−1
=00
Since it is form 00
We simplify as,
limz→1z13−1z16−1=(limx→1z13−1)÷(limz→1z16−1)
Multiplying and dividing by z−1
= limz→1(z13−1)×(z−1)(z−1)÷limz→1z16−1
= ⎛⎝limz→1z13−1z−1⎞⎠÷⎛⎝limz→1z16−1z−1⎞⎠
= ⎛⎝limz→1z13−113z−1⎞⎠÷⎛⎝limz→1z16−116z−1⎞⎠
{ Using limx→axn−anx−a=nan−1}
=13(1)13−1÷16(1)16−1
=13÷16
=13×61
=2
∴ limz→1z13−1z16−1=2