Evaluate the integral∫10(1+x).log(1+x)dx
∫10(1+x)log(1+x)dx
=log(1+x)(1+x)22−12∫(1+x)dx
=[log(1+x)(1+x)22−14(1+x)2]10
=[log(2)H2−14(2)2]−[0−14]
=2log(2)−34
=log4−34