Evaluate the integral∫101−x1+xdx
∫10(1−x1+x)dx
∫1−x1+xdx=∫21+xdx−∫1⋅dx
=2log(1+x)−x+c
∫1−x1+xdx=2log(1+x)−x+c
∫101−x1+xdx=(2log(1+x)−x+c)10
=2log(2)−1
=log4−log e
=log(4e)
Evaluate the definite integrals. ∫101√1+x−√xdx.