Evaluate the integral
∫10logx√1−x2dx
∫10logx√1−x2dx
x=sinθ=dx=cosθ⋅dθ
I=∫π20log(sinθ)dθ ----(1)
I=∫π20log(cosθ)dθ ----(2)
2I=∫π20log(sin2θ2)dθ
2I2=∫π20log(sin2θ)dθ−∫π20log2dθ
∫π20log(sin2 theta)dθ
Let,
2θ=t=12∫π0log(sint)t
=∫π20log(sint)dt
=I
2I−I=∫π20log2dθ
I=−π2log2
Or ∫π20log(sinθ)dθ=π2log2