Evaluate the integral∫10(sin−1x)2√1−x2dx
∫10(sin−1x)2√1−x2⋅dx
∫(sin−1x)2√1−x2⋅dx=∫(sin−1x)d(sin−1x)
=(sin−1x)33+c
∫10(sin−1x)2√1−x2⋅dx=[(sin−1x)33+c]10
=((sin−11)33+c)−((sin−10)33+c)
=13(π2)3
=π324
Evaluate the integrals using substitution. ∫10sin−1(2x1+x2)dx