Let I=∫10sin−1(2x1+x2)dx
Also, let x=tanθ⇒dx=sec2θdθ
When x=0,θ=0 and when x=1,θ=π4
∴I=∫π40sin−1(2tanθ1+tan2θ)sec2θdθ
=∫π40sin−1(sin2θ)sec2θdθ
=∫π402θ⋅sec2θdθ
=2∫π40θ⋅sec2θdθ
Taking θ as first function and sec2θ as second function and integrating by parts, we obtain
I=2[θ∫sec2θdθ−∫{(ddxθ)∫sec2θdθ}dθ]π40
=2[θtanθ−∫tanθdθ]π40
=2[θtanθ+log|cosθ|]π40
=2[π4tanπ4+log∣∣∣cosπ4∣∣∣−log|cos0|]
=2[π4+log(1√2)−log1]
=2[π4−12log2]
=π2−log2