Evaluate the integral
∫10sin−1√xdx
∫10sin−1(√x)dx
Let √x=t⇒x=t2
dx=2t dt
∴∫10sin−1(t)⋅2t dt
=2∫10sin−1(t)⋅t⋅dt
=2[sin−1(t)⋅t22]10–2⋅∫10t22√1–t2dt
=π2+∫10=−t2√1–t2dt
Let t=sinθ
=π2+∫π/20−sin2θcosθ⋅cosθ⋅dθ
=π2−∫π/20sin2θ⋅dθ
=π2−(12×π2) (using walli’s formula)
=π4
∴∫10sin−1(√x)dx=π4.