Evaluate the integral ∫20x√x+2 using substitution.
Open in App
Solution
∫20x√x+2dx Let x+2=t2⇒dx=2tdt When x=0,t=√2 and when x=2,t=2 ∴∫20x√x+2dx=∫2√2(t2−2)√t22tdt =2∫2√2(t2−2)t2dt =2∫2√2(t4−2t2)dt =2[t55−2t33]2√5 =2[325−163−4√25+4√23] =2[96−80−12√2+20√215] =2[16+8√215] =16(2+√2)15 =16√2(√2+1)15