Evaluate the integral∫a0√a+xa−xdx
∫a0√a+xa−xdx
x=acosθ=dx−asinθdθ
=∫aπ2√a+acosθa−acosθ(−asinθ)dθ
=a∫π20√1+cosθ1−cosθsinθdθ
=a∫π20cosθ2sinθ2⋅2sinθ2dθ
=a∫π202cos2θ2dθ=a∫π20(cosθ−1)dθ
=a(sinθ)π20−(θ)π20
=a[1−0]−(π2)
=a(π2+1)
=a2(π+2)
cos{3π/2 + x } cos(2π+x) [ cot {3π/2 - z} + cot (2π+x) ] =1