The correct option is B tan−1b
Let I=∫∞0e−xsin bxxdx
dIdb=∫∞0∂∂b(e−xsin bxx)dx=∫∞0e−xxcos bxxdx
=∫∞0e−xcos bx dx
We know than
∫eaxcos bx=eaxa2+b2(a cos bx+b sin bx)
∫∞0e−xcosbxdx=[e−x1+b2[−cosbx+b sin bx]]∞0
dIdb=11+b2
Integrating both sides, I=tan−1b