∫π20|cosx−sinx|dx
√2∫π20|sin(x−π4)|dx
=−2∫π40sin(x−π4)dx+√2∫π2π4sin(x−π4)dx
=√2cos(x−π4)π40−√2cos(x−π4)π2π4
=√2[[1−1√2]−(1√2−1)]
=√2(2)[1−1√2] =2(√2−1)