Evaluate the integral
∫π/20asecx+bcosecxsecx+cosecxdx
I=∫π20asecx+bcosecxsecx+cosecxdx
∫a0f(x)dx=∫a0f(a−x)dx
I=∫π20asecx+bcosecxsecx+cosecxdx=∫π20acosecx+bsecxcosecx+secxdx=I
2I=∫π20(a+b)⋅dx
I=(a+b)2⋅π2
=(a+b)π4
∫π20asecx+bcosecxsecx+cosecxdx=(a+b)π4