Evaluate the integral∫π/20cosx1+sin2xdx
∫π20cosx1+sin2xdx=∫π20dsinx1+sin2x
∫π20dsinx1+sin2x=[(tan−1(sinx)+c)]π20 (∫11+x2=tan−1x)
=(tan−1(sin(π2)+c)−(tan−1(sin0)+c)
=tan−1(1)
=π4
Evaluate the definite integrals. ∫π3π6sin x+cos x√sin 2xdx