Evaluate the integral∫π0dxa+b cos x where a>b
I=∫π0dxa+b cos x; I=∫π0dxa−b cos x
2I=∫π02aa2−b2cos2x
2I=2a∫π0dx tan xa2(1+tan2x)−b2
2I=2a∫π0dx tan xa2tan2x+(a2−b2)
2I=2a√a2−b21a tan−1(a tan x√a2−b2)π0
I=π√a2−b2