Evaluate the integral∫11/21√1−x2dx
∫1121√1−x2dx
We know that ∫1√1−x2dx=(sin−1x+c)
∫1121√1−x2dx=[(sin−1x+c)]112
=(sin−11+c)−(sin12+c)
=sin−11−sin−112
=π2−π6
=π3
∫1121√1−x2dx=π3