Evaluate the integral ∫21(1x−12x2)e2xdx using substitution.
Open in App
Solution
∫21(1x−12x2)e2xdx Let 2x=t⇒2dx=dt When x=1,t=2 and when x=2,t=4 ∴∫21(1x−12x2)e2xdx=∫4212(2t−2t2)etdt =∫42(1t−1t2)etdt Let 1t=f(t) Then, f′(t)=−1t2 ⇒∫42(1t−1t2)etdt=∫42et[f(t)+f′(t)]dt =[etf(t)]42 =[et⋅1t]42 =[ett]42 =e44−e22 =e2(e2−2)4