The correct option is A 0
Let I=∫5π/4−3π/4(sinx+cosxex−π/4+1)dx
=∫5π/4−3π/4√2cos(x−π4)ex−π4+1dx
Substitute x−π4=t or dx=dt
∴I=∫π−π√2costet+1dt........(1)
Replacing t by π+(−π)−t or −t, we get
I=∫π−π√2cos(−t)e−t+1dt=∫π−πet√2cos(t)et+1dt......(2)
Adding equations (1) and (2), we get
2I=√2∫π−πcostdt or I=0