Evaluate the integral∫aa21√a2−x2dx
∫a2a1√a2−x2⋅dx
∫1√a2−x2⋅dx=1a∫1√1−(xa)2⋅dx
=∫d(xa)√1−(xa)2
=sin−1(xa)+c
∫aa21√a2−x2⋅=[sin−1(xa)+c]aa2
=(sin−1(aa)+c)−(sin−1(a2a)+c)
=[(sin(1)+c)−(sin−1(12)+c)]
=π2−π6
=π3